Kernenergie kan ons niet helpen bij de energietransitie



Toon eerste bericht

48 reacties

Reputatie 2

Dit is geen simpele vraag, de materie is niet alleen technisch, maar ook op andere gebieden complex en daarom een wat uitgebreider antwoord.

De kernenergie discussie heeft veel overeenkomsten met de stikstof discussie.

De stikstof hadden we 10 jaar geleden al kunnen oplossen met een gecoördineerde overgang, maar door belanghebbenden (boeren, enz.) wordt dat op NL en op Europees niveau getraineerd.

Op dezelfde manier hadden we 10 jaar geleden met de invoering van kernenergie kunnen beginnen met een gecoördineerde overgang, maar door tegenstanders (groene partijen, enz.) wordt dat op NL en op Europees niveau getraineerd.

Het Europese project om generatie 4 centrale te ontwikkelen onder leiding van de TU Delft heeft vanwege het politieke weifelen nauwelijks budget gekregen en hebben nu niet eens geld voor een proefcentrale. Toch blijven zij optimistisch want er zijn geen fundamentele problemen meer (zoals bij kernfusie), alleen nog technologische problemen. Hier gaat het niet snel en zij denken rond 2040 een centrale te kunnen leveren.
(Vanwege de onopgeloste fundamentele problemen is een kernfusie centrale niet te voorspellen, maar dat zal nog tientallen jaren duren is de verwachting).

Maar het grootste probleem is dat de energietransitie niet gecoördineerd wordt door een team van deskundigen. Ja, allerlei partijen hebben hun standpunten en rapporten, maar dat is geen coördinatie. Er zijn grote opgaves zoals de isolatie en het transportprobleem, maar ook draagvlak. Iedere partij doet zijn stukje en de coördinatie is ver te zoeken.

Om een energietransitie goed en effectief te doen hebben we systeemdenken nodig. Daarmee worden alle puzzelstukjes (zon – wind – opslag – kernenergie – transport) optimaal gecombineerd. Ook moet die systeemarchitectuur dynamisch zijn want de puzzelstukjes worden steeds verder ontwikkeld en er komen ook nieuwe bij (opslag, groene kernenergie). En de overheid moet regie voeren om dat systeemdenken effectief te implementeren. En niet via de RES de uitvoering en coördinatie over de schutting van gemeentes te gooien, want die missen de noodzakelijke kennis.
Dat systeemdenken wordt al veel langer betoogd door de groene paus Wouter van Dieren die ook meewerkte in de Club van Rome. Niet de eerste de beste en ik ben het hartgrondig eens met zijn betogen.

Wanneer kan een kerncentrale geleverd worden?

Dat is afhankelijk van het type. Het snelst kan een klassieke generatie 3 centrale geleverd worden, daarna een gasgekoelde generatie 4 centrale en daarna een generatie 4 centrale die afval kan vernietigen en die je vanwege de hoge temperatuur kunt gebruiken om industrie te vergroenen.

De bouwtijd van een klassieke centrale in Japan en China is 4 jaar. China gaat nog sneller vanaf 2025 grootschalig generatie 3 en 4 centrales bouwen die in een fabriek in serie worden geproduceerd en het stook gedeelde van de kolencentrales moeten vervangen. Daarna wil men vanaf 2030 die centrales exporteren. Dit is voor Nederland de snelste route.

Wanneer kan EDF een nieuwe generatie 3 kerncentrale leveren?

EDF is in staat om een ​​nieuwe generatie 3 kerncentrale te leveren tussen 2030 en 2035.
Het kabinet wil in 2025 een definitieve keuze maken over de locatie en het reactorontwerp.
De bouw van de nieuwe centrales zou dan in 2030 kunnen beginnen.
Dit zijn de nieuwste Franse EDF generatie 3 centrales. Die nieuwe generatie centrales zijn sterk gestandaardiseerd en belangrijke componenten zijn over gedimensioneerd. Dat maakt ze voorspelbaar, betaalbaar en snel te leveren. 

Er zijn veel kandidaten voor het leveren van een generatie 4 centrale.

De verwachting is dat de eerste generatie 4 centrales buiten China rond 2035 operationeel zijn. De ontwikkeling van de regelgeving, financiering en publieke acceptatie zijn belangrijke factoren die de timing zullen beïnvloeden.

Reputatie 7
Badge +2

@Driepinter Nee, de wereld vergaat pas over een miljard jaar of zo, als hij de zon in draait :)

Het is vooral onze manier van leven die op een gegeven moment onder druk zal komen staan.

Anne.

Reputatie 2

@Driepinter Nee, de wereld vergaat pas over een miljard jaar of zo, als hij de zon in draait :)
Het is vooral onze manier van leven die op een gegeven moment onder druk zal komen staan.
Anne.

Wat komt er allemaal op ons af: stikstof, water, landbouwgif, medicijnresten, klimaat verandering, enzovoort.
En de adviseurs van de overheid zeggen "Niet alles kan en zeker niet tegelijk". Dus stel prioriteiten. 
Waar we nog aan moeten wennen zijn de (grote) investeringen om de gevolgen van de klimaatveranderingen op te vangen, zoals zeespiegelstijgingen en extreem weer. Want als we in 2050 de energietransitie gedaan hebben, dan houden we nog heel veel jaren een sterk verstoord klimaat. De reden daarvoor is de opwarming van de oceanen die tientallen jaren nodig zal hebben om weer af te koelen. En de ergste problemen zoals extreem weer en de grote droogtes komen door de opwarming van de oceanen. Een energietransitie zorgt dat het niet erger wordt, maar het is zeker niet genoeg! Daarmee moet je eerlijk zijn naar de mensen toe, want met die maatregelen moet je nu beginnen.

Reputatie 6
Badge

Ik heb in bovenstaande discussie een fundamenteel item rond kernenergie gemist.

Als we de huidige problematiek rond de energietransitie willen oplossen moeten we met name ook kijken naar de beperkingen van de bestaande infrastructuur. De gigantische groei van energiegebruik in de residentiële omgeving wordt niet automatisch opgelost met het bouwen van een paar (gecentraliseerde) kernenergie centrales, deze vervangen hoogstens de oude fossiele technologie en dragen bij aan een substantiële reductie van de CO2 emissie.

De beperkende infrastructuur is daarmee niet opgelost.

De vraag is ook of we ook een gedecentraliseerde oplossing met kernenergie kunnen overwegen die lokaal/regionaal het verschil in vraag en aanbod kan bufferen op basis van de bestaande infrastructuur. De kernenergie discussie moet niet kijken naar alleen de uithoeken van het land maar ook naar de “achtertuin” van de energie gebruikers.

Met de 4 centrales uit het VVD plan komen we er niet !

Reputatie 4

is dat ergens feitelijk gemaakt? Maw: kunnen we de onderliggende berekening ergens nalezen?

Reputatie 2

Ik heb in bovenstaande discussie een fundamenteel item rond kernenergie gemist.

Als we de huidige problematiek rond de energietransitie willen oplossen moeten we met name ook kijken naar de beperkingen van de bestaande infrastructuur. De gigantische groei van energiegebruik in de residentiële omgeving wordt niet automatisch opgelost met het bouwen van een paar (gecentraliseerde) kernenergie centrales, deze vervangen hoogstens de oude fossiele technologie en dragen bij aan een substantiële reductie van de CO2 emissie.

De beperkende infrastructuur is daarmee niet opgelost.

De vraag is ook of we ook een gedecentraliseerde oplossing met kernenergie kunnen overwegen die lokaal/regionaal het verschil in vraag en aanbod kan bufferen op basis van de bestaande infrastructuur. De kernenergie discussie moet niet kijken naar alleen de uithoeken van het land maar ook naar de “achtertuin” van de energie gebruikers.

Met de 4 centrales uit het VVD plan komen we er niet !

Dank voor je opmerking. Je hebt helemaal gelijk!

De VVD plannen gaan uit van generatie 3 Franse EDF centrales die waterkoeling nodig hebben.

De kernenergie hoogleraren adviseren om te wachten op de komende generatie 4 centrales. Die zijn inherent veilig en hebben weinig afval dat 300 jaar bewaard moet worden. En nog beter kunnen ze (snelle neutronen reactor) zelf het afval (nieuw en bestaand) verbranden (project in Canada). De implementatie zijn kleinere SMR reactoren die in de fabriek in serie te produceren zijn wat ze betaalbaar en voorspelbaar maakt en ze zijn overal te plaatsen zonder waterkoeling! 

Maar SMR's is geen oplossing voor alle problemen, maar een puzzelstuk in de combinatie (zon - wind - opslag - kernenergie - transport)! Door die puzzelstukjes optimaal te combineren krijg je een veel betere oplossing.
Omdat je ze overal kunt neerzetten heb je het transportprobleem geminimaliseerd.
Ook zijn generatie 4 SMR's breder toepasbaar vanwege de hoge temperatuur en lage druk. Zet er een bij de hoogovens en je hebt geen vervuilende cokes meer nodig. Bijvoorbeeld door de te leveren warmte en de productie van zuurstof via een thermochemisch proces. Zie
https://world-nuclear.org/information-library/non-power-nuclear-applications/industry/nuclear-process-heat-for-industry.aspx

Ook kan een zout gekoelde generatie 4 centrale zijn output regelen van 20% - 80% wat een groot voordeel is in de combinatie met zon en wind.

Het is goed om in deze ook naar China te kijken.
De Chinezen bouwen nog enkele tientallen conventionele (kolen)centrales. Het plan is om de stookgedeeltes van die centrales later te vervangen door een kleine (SMR) generatie 4 groene kerncentrales.
Die SMR centrales worden in een fabriek in serie gebouwd waardoor ze voorspelbaar en betaalbaar zijn. En een SMR gasgekoelde en een zout gekoelde  centrale draaien daar al productie.
Dat is handig, want dan kun je de stroomopwekking (dynamo), de aansluiting op het stroomnetwerk en het stroomnetwerk zelf hergebruiken.
Waarom in die volgorde? Vanwege een heel groot tekort aan stroom en grote vervuiling van oudere centrales.
Ja, China is pas in 2060 CO2 neutraal, maar -in tegenstelling tot de westerse landen- doen ze wel wat ze afspreken. In hun projecten zie je ook nauwelijks vertraging. De centrales worden vanaf 2025 breed uitgerold en verwacht vanaf 2030 worden ze geëxporteerd. 

Waarom gaan we niet met China samenwerken in deze? Het klimaat vereist een wereldwijde aanpak!

Reputatie 7
Badge +1

@Anne  Er lijken weer verkiezingen aan te komen!

Als ik uit jouw topic start post mag citeren:

“Met enige regelmaat, zeker rond de verkiezingen, komt de suggestie langs om kernenergie (via splitsing) te gebruiken als lage CO2 uitstotende energievoorziening.

Die vorm van kernenergie zal ons echter niet kunnen helpen in de energietransitie.”

Kernenergie is waarschijnlijk geen panacea voor alles en nog wat - reactortechnologieën
in serie op kleinere schaal toe te passen lijkt voor een aantal toepassingen op lokaal niveau voordelen te bieden.

Er zijn natuurlijk ook (niche) toepassingen welke voorlopig alleen met kernsplitsing mogelijk zijn.

Maar ik ben er nog steeds niet van overtuigd dat kernreactoren - in welke vorm dan ook - onmisbaar of essentieel voor de energietransitie in Nederland zijn.

Dit nog los van het nog steeds onopgeloste afvalvraagstuk (kosten, logistiek, veiligheid)

 

Reputatie 2

Nog wat aanvullende informatie over kernenergie


Het is volkomen terecht dat de huidige generatie 2 watergekoelde kerncentrales dichtgaan. Ze zijn niet inherent stabiel en daarmee onveilig. Met name moeten ze water gekoeld worden en als die koeling wegvalt dan worden ze instabiel met soms grote gevolgen.  Ook produceren die generatie 2 kerncentrales gevaarlijk afval dat tienduizend jaar bewaard moet worden.
Maar wat dan wel?
Kleine generatie 4 SMR centrales zijn een prima optie.

  • Generatie 4 centrales zijn inherent veilig. Als er iets gebeurt met de koeling etc. dan stopt de reactie gewoon. Ook hebben zij geen kritische zaken als een speciaal reactorvat nodig. En er is brandstof genoeg voor eeuwen.
  • Het afvalprobleem van generatie 4 centrales is vrijwel opgelost. Deze centrales hebben veel minder afval dat ook minder lang, bijvoorbeeld 300 jaar, bewaard hoeft te worden. Ook kunnen deze centrales het huidige afval onschadelijk maken!
  • Thorium minicentrales kunnen in capaciteit variëren van 20%-100% door de warmteopslag in zout. Dat maakt de vijfhoek “Wind – Zon – Opslag - Kleine veilige SMR centrales-Transport” compleet.
  • Je kunt met deze centrales veel minder goed kernwapens maken. Dat is een groot voordeel en de reden dat kernmachten ze links hebben laten liggen.
  • Deze centrales hebben geen waterkoeling nodig, dus je kunt ze overal neerzetten.
  • Generatie 4 centrales zijn hoge temperatuur en lage druk (geen speciaal drukvat meer).  Daarmee zijn zij veel breder inzetbaar bijvoorbeeld voor het vergroenen van de industrie.

De huidige ontwikkeling is het opzetten van kleine veilige flexibele centrales (Small Modular Reactors SMR). Klein betekent dat ze in een container passen en overal neergezet kunnen worden.  Ook kunnen ze in serie fabrieksmatig geproduceerd worden, wat ze redelijk betaalbaar maakt.
Een prima uitgangspunt is de veelhoek “Wind – Zon – Opslag - Kleine veilige generatie 4 centrales-Transport” als een eenheid te beschouwen. Daarmee heb je meteen de leverzekerheid en het elektriciteit transport opgelost.

 

Afval van kerncentrales

Klassieke generatie 2 kerncentrales verbranden 3% van de brandstof. De overige 97% is gevaarlijk afval dat tienduizend jaar bewaard moet worden.

Nieuwe generatie 4 kerncentrales verbranden 98% van de brandstof. De overige 2% is afval dat 300 jaar bewaard moet worden.

Bepaalde (snelle neutronen) generatie 4 centrales kunnen het nieuwe en eerdere afval verbranden. Afval van de oude centrales (97% niet opgebrand!) is brandstof voor eeuwen. Daarmee is het afvalprobleem grotendeels opgelost.

 

Plannen voor kerncentrales in Nederland

Dit zijn Franse EDF generatie 3 centrales. Die centrales zijn sterk gestandaardiseerd en belangrijke componenten zijn over gedimensioneerd. Dat maakt ze voorspelbaar en betaalbaar. Helaas hebben die generatie 3 centrales dezelfde bezwaren als de generatie 2 centrales. De kernenergie hoogleraren in Nederland adviseren daarom te wachten op de nieuwe veelbelovende generatie 4 centrales.

 

Discussie

In discussies worden bij de nieuwe generatie 4 centrales de bezwaren van generatie 2 genoemd. Dat is niet meer ter zake maar wel heel hardnekkig.

Die nieuwe flexibele en veilige generatie 4 centrales zijn een smeerolie in de energietransitie. Nu is dat nog op de achtergrond, maar als mensen de pijn van de energie transitie echt gaan voelen, dan is zo een smeerolie zeer nuttig en noodzakelijk. 

Ook de IPCC scenario's en de IEA zeggen dat we niet zonder kernenergie kunnen, maar dat is te diepgaand voor dit forum.

Reputatie 6
Badge

@Aart Dank voor je uitgebreide aanvullingen. Duidelijk en begrijpelijk

Je adresseert de problematiek echter hoofdzakelijk vanuit een technologisch perspectief. Mijn zorg ligt meer op het vlak van de maatschappelijke acceptatie. Kleinschalige units mits goed en snel regelbaar kunnen inderdaad de aanpak tegen congestie en regionale infrastructuur gebreken helpen oplossen.

Echter de maatschappelijke gevoeligheden rond de kernenergie discussie zijn tot nu toe hoofdzakelijk vanuit een “ver van mijn bed” betrokkenheid geweest. Als het om meer decentrale/regionale installaties gaat komt de discussie op het terrein waar we nu ook zitten met 4G/5G zendmasten en windturbines. De acceptatie ligt daar een stuk lastiger en zal waarschijnlijk heel veel lokale weerstand opwekken.

Reputatie 2

@AartDank voor je uitgebreide aanvullingen. Duidelijk en begrijpelijk

 

Je hebt gelijk met je twijfels. Zelf heb ik bij RES discussies gezeten en dan vallen wat zaken op. Ik noem er twee.

1 Draagvlak is essentieel en wordt steeds belangrijker. Bij grote veranderingen heb je altijd drie groepen, de voorop-lopers (bv 20%), de achterblijvers (bv 20%) en de grote middengroep. De voorop-lopers hoef je niet te overtuigen en de achterblijvers benaderen is redelijk zinloos.  De voorlopers zeggen: “De aarde gaat kapot en de tijd van praten is voorbij". De achterblijvers ontkennen vaak het probleem.  De grote middengroep zegt: "Wat gaat er gebeuren? - Wat gaat het kosten? - Kan ik het nog wel betalen?".  Het is dan uiterst belangrijk om je energie te richten op de grote middengroep en je niet te veel te laten beïnvloeden door de soms luide discussie van de voorop-lopers en de achterblijvers.

De huidige discussie zijn de voorop-lopers en die zijn moeilijk te overtuigen. Maar je kunt je ook richten op de grote middengroep. Als die de pijn van de energie transitie echt gaan voelen, dan krijg je een heel andere discussie. Die willen bijvoorbeeld vaker windmolens uitruilen tegen een SMR.
Via die grote middengroep moet je ook meer politieke steun krijgen. Nu loopt er een Europees project met de TU Delft om een veelbelovende groene generatie 4 kerncentrale te ontwikkelen. Maar ze krijgen zo weinig geld dat ze niet eens een proefcentrale kunnen bouwen. Dat illustreert het grote gebrek aan politieke steun.

2  Je noemt het technologisch perspectief. Dat klopt, maar je kunt er ook als volgt naar kijken.
Bij de partijen heb je -simpel gezegd- twee richtingen, die ik de romantici en de systematici noem. Hieronder een korte duiding.

Romantici

  • Doen een diversiteit aan acties die vooral een goed onderbuikgevoel geven.
  • Varieert van goedwillend tot extreem en provocerend.
  • Veel acties dragen weinig bij en zijn vaak niet meetbaar.
  • Kernenergie verstoort de vredige gemeenschap.
  • Nadruk op circulaire en lokale landbouw zoals in vroegere tijden.

Systematici

  • Alle onderdelen duidelijk gepland en op elkaar afgestemd in een optimale samenwerking. Afgestemd betekent systeemdenken.
  • Open minded voor nieuwe ontwikkelingen waaronder lokale SMR kerncentrales.
  • Minder aanhang want is te technologisch en niet sexy genoeg.
  • Precision farming. Zonder bestrijdingsmiddelen met trekker met AI onkruid detecteren en met laser verwijderen. Bewateren en bemesten alleen lokaal waar nodig.

Wat is nu het probleem?

Om voortgang te krijgen in de energietransitie heb je de Systematici school nodig, maar om draagvlak te krijgen heb je de Romantici school nodig.
Een verstandige aanpak is dan het opzetten van een onafhankelijk ”OMT” die alle feiten en andere zaken op een rijtje zet.  Misschien beter om dit EMT (Energietransitie Management Team) te noemen waarin wetenschappers en deskundigen van verschillende disciplines de centrale en decentrale overheden adviseren hoe om te gaan met de energietransitie.
Als je dat niet doet, dan krijg je partij politieke ideologieën van alle stromingen, dat is niet goed voor de geloofwaardigheid en lost niets op. Als we het oneens zijn over een punt, geef dan de discussie een eerlijke kans met zo een onafhankelijke ”EMT”.

 

Reputatie 7
Badge +2

Ook de SMR 4’s gaan ons niet helpen.

Die zijn voor zover ik kan nagaan nog nergens in de westerse wereld op significante schaal in gebruik. Dus wat het kost om die te bouwen en hoe lang dat gaat duren is eigenlijk niets zinnigs over te zeggen?

Daarnaast is het formaat voordeel meteen ook een nadeel:
ter vervanging van 1 ‘moderne’ nucleaire centrale zijn er tientallen ‘kleine’ SMR’s nodig.

Dus nee, nucleair gaat ons echt niet helpen.

Anne.

Reputatie 2

Ook de SMR 4’s gaan ons niet helpen.

Dank voor je reactie en ik snap je twijfel.

 

De IEA en IPCC zeggen dat kernenergie nodig is. Niet iets dat alles oplost maar als puzzelstukje in het geheel. Maar wat betekent dat?

Zij werken met scenario’s die gebaseerd zijn op aannames.

Bijvoorbeeld nu gebruiken we 100% elektriciteit waarvan 10-15% uit zon en wind.

Maar als je alles elektrificeert inclusief industrie, hoeveel is er dan nodig? De schattingen afhankelijk van de aannames variëren van 200-400% met hogere uitschieters.

Dat kan natuurlijk minder zijn als je grootgebruikers verplaatst naar het buitenland. Maar de politiek moet natuurlijk ook naar verdienvermogen en werkgelegenheid kijken. Kortom een ingewikkelde discussie. Ook zijn er (Duitse) studies die zeggen dat je bij elektrificatie en innovatie ook efficiënter gaat werken.

En er zijn ook realistische voorbeelden waarbij de efficiency minder wordt. Bijvoorbeeld nu zitten we in een makkelijk traject van de energie transitie. De mensen die nu isoleren en een 40 graden warmtepomp only nemen, die kopen een nieuwgebouwd huis of zijn meer voorop lopers. Die voorop lopers zijn zeer gemotiveerd met een hoog acceptatie niveau.
Maar er zijn nog heel veel meer woningen waar het isoleren niet zo snel gaat. Vaak worden particuliere verhuurders genoemd, maar ook andere bewoners zien op tegen de kosten. Dat zijn de grote middengroepen. Als we die van het gas willen halen, dan zijn we vaker aangewezen op 70 graden warmtepompen. Die worden al breed getest, maar zo een 70 graden warmtepomp heeft een veel lager rendement dan een 40 graden warmtepomp, dus met een stuk meer elektriciteit gebruik.

Wat betekent dit nu?

De IEA en IPCC zeggen dat kernenergie nodig is. Dat zeggen ze op basis van scenario’s. Afhankelijk van de aannames kan dat meevallen, maar ook tegenvallen. In het meest ideale scenario kun je zonder kernenergie, maar dan neem je wel een risico als de ideale aannames niet uitkomen.

Ook ben je daar afhankelijk van het internationale politieke speelveld. Dan is het verstandig om alle puzzelstukjes inclusief kernenergie beschikbaar te houden. Dat geeft je de broodnodige flexibiliteit om de energietransitie in alle scenario’s overeind te houden.

Daarbij zou ik de generatie 2 centrales willen sluiten. Het ideale scenario zijn de meer flexibele en veilige generatie 4 centrales zoals de kernenergie hoogleraren adviseren, maar de Fransen zullen grote druk uitoefenen om hun generatie 3 EDF centrales te kopen.

Reputatie 7
Badge +2

Als je heel specifiek naar CO2 uitstoot kijkt dan zou kernenergie een alternatief zijn geweest.

Mijn idee is echter dat kernenergie geen rol kan spelen in de transitie.
Het bouwen van centrales met bekende ‘oude’ technologie duurt een eeuwigheid en is heel erg duur. Nieuwe technologieën zullen ook niet op korte termijn beschikbaar zijn en hebben wrs vergelijkbare problemen. Kleine centrales zijn mss sneller te bouwen, maar je hebt er meer van nodig, dus uiteindelijk zullen die wrs ook niet sneller kunnen worden gebouwd of aanzienlijk goedkoper zijn.

En sowieso zijn er maar heeeeeeel weinig partijen die dit werk kunnen doen.
En 1 van de belangrijkste spelers is recent genationaliseerd dus zal denk ik enkel ingezet worden om te proberen dat de verwarming en het licht in Frankrijk niet uit gaat - wat ik overigens verwacht dat niet zal lukken.

Waar het op neer zal komen is dat allerlei oude rommel veel langer open zal blijven.
Die vervolgens allemaal de helft van de tijd uit staan vanwege veiligheidsrisico’s of gebrek aan koelwater.
En er zal dus juist minder energie via kerncentrales beschikbaar zijn de komende decennia.

Naar mijn mening :)

Anne.

Reputatie 7
Badge +3

@Aart  Bij thorium, dus een Molten Salt Reactor (MSR niet te verwarren met SMR Small Modular Reactor) heeft het reactorvat 1. een zeer hoge temperatuur  2. zwaar radioactief en 3. zeer corrossief (immers gesmolten zout). Geen enkele metaallegering is daar thans toe voor bestand. Het Nederlandse Thorizon heeft als oplossing het op tijd gemakkelijk kunnen verwisselen van het reactorvat. Mócht een Molten Salt Reactor echt gaan werken dan kan je dus ook tijdens een stroomoverschot een grote voorraad gesmolten zout à 600 graden oC gaan produceren om later stoom op te warmen voor een stoomturbine (zoals in een inmiddels failliete Concentrated Solar Heat reactor in een Amerikaanse woestijn. 

Reputatie 2

In deze rubriek zijn een aantal reactie tegen kernenergie. Dat is heel begrijpelijk en in veel van de argumenten hebben ze gewoon gelijk. Het is namelijk volkomen terecht dat de klassieke generatie 2 watergekoelde kerncentrales dichtgaan. Ze zijn niet inherent stabiel en daarmee onveilig. Met name moeten ze gekoeld worden en als die koeling wegvalt dan worden ze instabiel met soms grote gevolgen. Daarbij produceren ze afval dat vele duizenden jaren veilig moet worden opgeslagen.

Maar de opkomende generatie 4 centrales is een totaal ander verhaal. Die generatie 4 centrales zijn inherent veilig. Als er iets gebeurt met de koeling etc. dan stopt de reactie gewoon. Ook hebben zij geen kritische zaken als een speciaal reactorvat nodig. En er is brandstof genoeg voor eeuwen. En het afvalprobleem is feitelijk opgelost, omdat zij het afval verder kunnen verbranden en zo onschadelijk maken (zie de Canadese reactoren). Een generatie 2 centrale verbrandt 3% van de brandstof en de rest is afval. Maar een generatie 4 centrale verbrandt 98% van de brandstof en heeft dus veel minder afval. Ook hoeft dat afval van een generatie 4 centrale minder lang, 300 jaar bewaard te worden. Vergelijk dat met toekomstig kernfusie afval dat 200 jaar bewaard moet worden.

Maar hebben we ze wel nodig? De IEA en IPCC zeggen dat kernenergie nodig is. Niet iets dat alles oplost maar als puzzelstukje (zon – wind – opslag – kernenergie – transport) in het geheel.
Maar wat betekent dat? Zij werken met scenario’s die gebaseerd zijn op aannames. Bijvoorbeeld nu gebruiken we 100% elektriciteit waarvan 20% zon en wind (bron CBS), maar als je alles elektrificeert inclusief industrie, hoeveel is er dan nodig? De schattingen afhankelijk van de aannames variëren van 200-400% met hogere uitschieters. Dus we hebben nog veel groei nodig.

Deze generatie 4 centrales hebben geen waterkoeling nodig, dus je kunt ze overal neerzetten.

Vanwege de hoge temperaturen zijn ze zeer geschikt om industriële processen te vergroenen.

De huidige ontwikkeling is het opzetten van kleine veilige flexibele centrales (Small Modular Reactors SMR). Klein betekent dat ze in een container passen en overal neergezet kunnen worden.  Ook kunnen ze in serie fabrieksmatig geproduceerd worden, wat ze voorspelbaar en betaalbaar maakt.

Generatie 4 centrales draaien al productie in China (een gasgekoelde en een zout gekoelde).

De bouwtijd van een kerncentrale in Japan en in China is vier jaar.

Bovenstaande informatie zal nog vele vragen oproepen. Heel recent is een zeer goed overzicht verschenen van Tomas Pueyo dat de meeste vragen beantwoord:

https://unchartedterritories.tomaspueyo.com/p/why-nuclear-is-the-best-energy

 

 

 

Reputatie 2

Correcte link:

https://unchartedterritories.tomaspueyo.com/p/why-nuclear-is-the-best-energy

Reputatie 7
Badge +2

Even voor de volledigheid: type 4 centrales zijn niet inherent veilig.
Ze zijn aanzienlijk minder gevoelig voor een meltdown.
Maar de meeste recente problemen met kerncentrales,
of beter gezegd de recente rampen,
want kerncentrales, ook type 4’s  hebben een reeks aan problemen, 
waren volgens mij niet van het meltdown type?

Als je de plannen van Gen IV een beetje doorneemt dan krijg je niet het idee dat er in Europe binnen een jaar of 10 kan worden begonnen met de bouw van type 4 centrales.
GIF Portal - GIF Annual Report 2022 (gen-4.org)

Zelfs in China, waar beslissingen toch een stuk makkelijker kunnen worden genomen zijn ze vooral nog aan het experimenteren.

Op dit moment kunnen er alleen type 3 gebouwd worden.
Wie dat dan zou moeten doen is sinds EDF weer helemaal in handen is van de Franse staat ook een groot vraagteken?

Ik ken geen enkel lopend project in Europa dat je op welke manier dan ook als succesvol zou kunnen zien. Niet in Finland, Frankrijk noch de UK.
In de UK wordt een nieuwe site gebouwd waarvan ze eigenlijk nu al weten dat water toevoer een serieus probleem gaat zijn. Je kunt er dus op wachten dat die, net zoals vele andere bestaande centrales, met enige regelmaat stil zal moeten komen te liggen.

De grootste speler - voor zover ik weet - had en heeft ook nog steeds een plethora aan problemen. Zo ligt ongeveer de helft van de centrals in Frankrijk meestal plat.

Persoonlijk verwacht ik dan ook dat er de komende 10 jaar niet eens voldoende capaciteit bijgebouwd kan worden om de bestaande capaciteit te vervangen.
Laat staan dat kernenergie ons kan helpen in de energie transitie.

Anne.

Reputatie 2

Ik begrijp dat Anne niet erg enthousiast is. Dat mag en iedereen moet zelf dat maar eens bekijken. Ik waardeer alle bijdragen in deze rubriek.

Maar Anne schreef: "Ze zijn aanzienlijk minder gevoelig voor een meltdown.”.
De inhoud van een generatie 4 is al gesmolten bij bedrijf, dat is de reden dat een meltdown helemaal niet kan.

En in China draaien de generatie 4 al productie, een gasgekoelde en een zout gekoelde. En dat aantal wordt nu snel uitgebreid. Daarbij is de bouwtijd in China en Japan van een centrale 4 jaar.

Kennelijk is er behoefte aan duidelijke informatie.
Heel recent is een zeer goed overzicht verschenen van Tomas Pueyo dat de meeste vragen beantwoord:
https://unchartedterritories.tomaspueyo.com/p/why-nuclear-is-the-best-energy
 

Dit zal Anne niet overtuigen, maar iedereen moet het maar voor zichzelf bekijken.

Reputatie 7
Badge +3

De eerste Thorium SMR

Vreemd. Een thorium Small Modular Reactor is een kleine versie van, met de nodige veranderingen, van een bestaande techniek. Namelijk een uraniumreactor. Omdat deze makkelijker te bouwen (zouden, er wordt er nog geen enkele gebouwd) zijn. Een (commerciële) thoriumreactor draait nog nergens. Dus hoe kan je dan van een niet bestaande reactortype een kleine versie gaan maken?

Reputatie 7
Badge +3


Een tweede proefcentrale is een Thorium centrale met gesmolten zout die in de woestijn staat in China. Deze centrales hebben geen waterkoeling nodig …

Nu neem ik alle berichten over thoriumcentrales met een grote korrel zout. Nu google ik en ik kan inderdaad iets vinden over een thoriumproefcentrale in een woestijnstad in China. Hij is slechts 2 MW én … levert geen elektriciteit. Dan heb je dus ook geen stoomturbine en heb je, om een hoog temperatuur en dus druk verschil een hoog rendement te krijgen, ook geen koelwater nodig. 

 Elektriciteitsopwekking door een warmtebron (gasverbranding of nucleair) gaat altijd door middel van een stoomturbine. 

 

Chinese gesmoltenzoutreactor mag van start | De Ingenieur

 

Reputatie 2

Je bericht is wat achterhaald, maar de ontwikkelingen gaan ook erg snel.
De Thorium centrale die al langer proef draait in de Gobi woestijn heeft half 2023 van de toezichthouder toestemming gekregen om productie te gaan draaien:
Thorium centrale mag productie draaien.
De gasgekoelde centrale draaide al langer productie.

De berichten over Thorium zijn inderdaad nogal gehyped. De gasgekoelde centrales komen veel eerder in grotere aantallen omdat ze eenvoudiger zijn. Maar Thorium heeft vele voordelen in China en met name India, dus vandaar hun grote inzet. Ook de snelle neutronen centrales komen achteraan omdat ze ingewikkeld zijn, maar grote voordelen hebben omdat ze afval onschadelijk maken. Met name Canada zet hier groot op in.

Een groot voordeel van generatie 4 centrales, buiten de veiligheid en nauwelijks afval, is dat ze breed inzetbaar zijn. Bijvoorbeeld je kunt ze overal plaatsen (kijk eens naar de net problemen), ze zijn heel schaalbaar en voorspelbaar en vanwege de hoge temperatuur kun je ze gebruiken om industrie te vergroenen zoals hoogovens.

Ik verwijs liever naar het verhaal van Tomas Pueyo dan dat ik alles hier uitleg. Het is Engels, maar in je webbrowser kun je het automatisch vertalen.

Reputatie 7
Badge +3

@Aart H . Ik ga het niet lezen want die site vraagt goedkeuring cookies en ten tweede betwijfel ik het verhaal. Want als er al een thoriumcentrale zou draaien (dus zelfs elektriciteitsopwekking) waarom zou Thorizon en de TU Delft dan nog ‘prullen’ met Thorizon en problemen op te lossen. Zo is er nog geen methode om de reagentia uit de zoutreactor te halen.

Reputatie 2

Over kernenergie oplossingen.

Huidige centrales

De huidige generatie 2 kerncentrales moeten zo snel mogelijk gesloten worden om de volgende redenen:

  1. Die centrales zijn niet veilig want ze worden actief gekoeld en als die koeling wegvalt worden ze instabiel
  2. De splijtstof moet regelmatig vervangen worden en dat geeft veel hoog radioactief afval dat duizenden jaren veilig bewaard moet worden.

Ook zijn ze erg duur omdat ze lokaal gebouwd moeten worden.

Nieuwe generatie 4 veilige centrales

Er is een nieuwe generatie veilige centrales in ontwikkeling. Deze worden passief gekoeld en als de koeling wegvalt, dan stopt de reactor gewoon. Er zijn verschillende types en de keuze wordt gemaakt op basis van het afval.
Dan komen de Thorium-gesmolten zout reactors in beeld, want die hebben geen afval. Ze verbranden namelijk hun eigen afval. En als de centrale na lange tijd vervangen moet worden, dan wordt het afval verbrand door de opvolger. En uiteindelijk blijft er een kleine hoeveelheid over die relatie kort (300 jaar) veilig bewaard moet worden. Of nog beter verbrand in nog nieuwere types centrales.
De huidige ontwikkeling zijn kleine lokale centrales (container SMR “Small Modular Reactors”) die je overal kunt neerzetten. En ze kunnen in een fabriek in serie worden gebouwd waardoor ze veel goedkoper worden. En het concept is bekend, er draaide al een prototype in 1969. En de expert hoogleraren adviseren om even te wachten op deze generatie veilige centrales.
Bijkomende voordelen zijn dat deze centrales in capaciteit kunnen variëren van 20% – 100% (de warmte wordt dan opgeslagen in het zout) en dan een perfecte zero emissie aanvulling zijn voor zon en windenergie. Ook kunnen deze centrales het gevaarlijk afval verbranden van de huidige centrales.

Huidige situatie

Door tegenstanders worden alle centrales – de huidige onveilige en de nieuwe veilige – op een hoop gegooid. De discussie heeft dan meteen tegenwind. Maar deze nieuwe veilige centrales zijn zo veelbelovend dat de ontwikkeling gewoon door gaat.
Momenteel worden op veel plekken prototype gebouwd. Het grootste project met 700 researcher draait in China. Ook Frankrijk wil hier verder mee. We verwachten een draaiende omgeving binnen enkele jaren. Maar de Covid-19 crisis heeft geleerd dat het veel sneller kan als het voldoende prioriteit krijgt.
Er is veel informatie beschikbaar, kijk eens naar de vele presentaties op YouTube. Of de Vereniging Thorium Energie.
En als u ook de visie van de tegenstanders wilt zien, zoek dan op de stichting Wise.

Reageer