In magazine van juni 2021 over kernenergie staat geschreven” Kernenergie is de enige CO2-vrije energievorm die …..”. Hier ben ik het niet mee eens omdat ik me afvraag hoeveel fossiele energie het kost om een kernreactor te bouwen? Hoeveel fossiele energie kost het om de grondstoffen te verkrijgen? Hoeveel fossiele energie kost het om het afval op te slaan (een idee is om het radioactieve afval in Nederland, middels mijnbouw, onder een kleilaag op te slaan). Enz.
Die uitspraak is volgens mij van de directeur van Borssele?
Dat zal een vrij groot ‘wij van WC eend’ gehalte hebben en moet je dus met een beetje zout nemen.
Hij stapt ook vrij makkelijk over 1 van mijn bovenstaande punten heen: de enorm hoge kosten.
En dat voor een oplossing die maar tijdelijk respijt biedt, wel tot aan het eind der tijden -nog niet bestaande - oplossingen behoeft en niet op tijd beschikbaar zal zijn om een wezenlijke bijdrage te leveren bij de energie transitie.
Kortom: iedereen die denkt dat nucleaire splitsing ons kan helpen heeft volgens mij niet goed naar de realiteit gekeken O:)
Volgens dit onderzoek zou de cradle-2-cradle CO2 productie van een nucleaire centrale tussen de 1,4g en 288g per kWu liggen, met het gemiddelde 66g/kWu. Daarmee is het dus zeker niet CO2 vrij.
Anne.
Kernenergie is inderdaad duur, maar waarschijnlijk gewoon nodig. Ik zie het niet gebeuren dat het hele land vol komt te staan met windmolens en zonnepanelen. En dan nog hebben we energie nodig 's nachts en bij windstil weer. Met een subsidiesysteem heb je dan kernenergie mogelijk kunnen maken.
Dan heb je nog een probleem. Een kernenergiecentrale is slecht regelbaar. Die kunnen bijna niet afregelen als er toevallig wel veel groene energie opgewekt wordt.
Daar zijn natuurlijk wel (dure) oplossingen voor. Een daarvan zou zijn om naast een kernenergiecentrale een waterstoffabriek te bouwen. Zodat de centrale gewoon altijd kan doordraaien. Er zijn natuurlijk ook deels accusystemen en regelsystemen om het net qua verbruik te balanceren. Want een auto opladen hoeft natuurlijk niet vanaf 18.00 opgeladen worden. Als het op de gewenste tijd maar vol is.
Als het echt nodig zal zijn in de toekomst, hoeft het natuurlijk geen 25 jaar te duren. De ontwikkelingen in de techniek kunnen heel snel gaan als het echt nodig is. Het is kiezen voor nieuwe technieken of toch veel langer de traditionele brandstoffen gebruiken.
@Aart Het gebrek aan systeem denken leidt inderdaad tot op zich zelf staande discussies die nauwelijks een bijdrage aan echte oplossingen opleveren. Ik heb dat ook bij de informatie van milieu centraal nog niet echt terug kunnen vinden, (misschien ook wel niet goed gezocht).
Tot nu toe lees ik dat de kerncentrales waar we we ons op richten niet geschikt zijn voor het verwerken van een fluctuerende energie vraag. In Frankrijk wordt daar wel mee geëxperimenteerd maar heldere conclusies heb ik nog niet gevonden.
Onze energietransitie wordt gekenmerkt door 2 ontwikkelingen die beide (gelijktijdig) aangepakt moeten worden. Enerzijds groeit de totale behoefte aan elektrische energie door steeds verdergaande elektrificatie; Warmtepompen en E-mobiliteit in de residentiële omgeving vragen een veelvoud van wat 5 jaar geleden werd verbruikt. Anderzijds wordt de infrastructuur door de groeiende decentrale opwekking ineens geconfronteerd met “2-richtingsverkeer” in de energiestromen; daar is deze structuur, met uitzondering van het hoogspanningsnet, nooit voor ontworpen en gebouwd.
In dit spanningsveld lijkt een inzetten van gecentraliseerde opwekking, zoals kerncentrales, maar een potentieel deel van een oplossing. Op dit moment zit de zwakste schakel echter op een andere plek. We moeten iets beters bedenken voor het 2-richtingsverkeer in het distributienet. Opwekking en verbruik in dit distributienet moet veel beter op elkaar worden afgestemd.
Een aantal van de standpunten tegen kernenergie,
ook die van type 4 centrales, zijn niet achterhaald en zullen ook niet achterhaald worden.
Zoals al aangegeven bestaat type 4 niet. Er is al jaren sprake van dat het er ‘binnenkort’ komt, maar dat wordt ook al jaren van kernfusie en grafeen accu’s gezegd.
Zelfs als type 4 over 10 jaar gebouwd zouden kunnen gaan worden, dan nog is er geen reden aan te nemen dat die sneller of goedkoper gebouwd kunnen worden dan de huidige projecten (type 3b?).
Dus voor 2050 zullen die niet online zijn.
We moeten dus niet naar kernenergie kijken voor energie levering tussen nu en 2050.
Een ander argument zijn de kosten.
Ook type 4 reactoren zullen een groot risico hebben dat door commerciële partijen niet kan worden afgedekt. Hetzelfde geldt voor een garantie stelling van een paar honderd jaar. Want ook als een centrale weer is afgekoppeld moet die nog lange tijd in onderhoud en bewaakt moeten worden.
Dat zijn allemaal dingen die alleen een overheid kan doen.
En waardoor de prijs per kWu veels te hoog zou worden om commercieel vatbaar te zijn.
Ik verwacht overigens dat er zeker wel een aantal centrales nodig zullen zijn aangezien er een groot aantal bestaande centrales toch echt tegen het einde van hun termijn beginnen te lopen.
Doel in België staat bijvoorbeeld vaker stil dan dat het nog een bijdrage kan leveren?
Maar de komende 30 jaar verwacht ik alleen maar een afnamen in nucleaire capaciteit.
Daar hebben we in die periode dus niet veel aan.
Dat de regering toch wil gaan inzetten op nucleaire energie, wil dus eigenlijk alleen zeggen dat ze Borsele langer open willen houden dan origineel is afgesproken. Wat dat wil zeggen voor de veiligheid is dan weer een andere vraag. Maar het bijbouwen van nwe centrales, 3b of 4, zal zeker niet binnen nu en 20 jaar gerealiseerd kunnen zijn. Voor de rest is het dus gebakken lucht.
Anne.
Beste Anne. Dank voor je reactie. Hierbij wat aanvullingen.
Er draaien al meerdere SMR hoge temperatuur 4e generatie centrales in China sinds 2021. Enerzijds draait een gasgekoelde 4e generatie SMR centrale die al compleet uitontwikkeld is.
Een tweede proefcentrale is een Thorium centrale met gesmolten zout die in de woestijn staat in China. Deze centrales hebben geen waterkoeling nodig en zijn bij uitstek geschikt voor afgelegen plaatsen als een woestijn. Thorium is voor China en India van belang, omdat zij daarvan grote voorraden hebben.
De eerste Thorium SMR starten productie in China rond 2025. De eerste productie centrales zijn voor intern gebruik om kolencentrales te vervangen en de noodzaak daarvan is nergens een discussie. Vanaf 2030 worden die centrales dan in grote getale geëxporteerd.
In Nederland moeten we dan een miljard investeren om een aantal te reserveren. Nu al moeten we bedingen dat onze experts meekijken naar opzet en bedrijfsvoering. Op die manier krijg je betere centrales en houden we de vaart er in.
Waarom is dit zo belangrijk?
Het alternatief zijn klassieke licht water reactors die meteen commercieel leverbaar zijn, maar inherent niet-veilig en die ons opzadelen met een groot afval probleem. Politiek zal de druk steeds groter worden om die toch in te voeren, als de burgers de grote hobbels van de energie transitie gaan ervaren. En dan is het te laat voor zeer veilige Thorium reactors zonder een groot afval probleem.
Een kant en klare veilige Thorium centrale is dan bittere noodzaak. En de kernenergie hoogleraren adviseren sterk om nog even te wachten op die inherent veilige centrales met minimaal afval probleem.
Voordelen
Veel voordelen van Thorium SMR hebben we in voorgaande posts gezien. Maar een Thorium centrale is ook veel effectiever en daarmee veel goedkoper dan een licht water reactor. Even wat techniek:
Klassieke reactor: lage temperatuur (300 graden) en hoge druk.
Thorium SMR: hoge temperatuur (800 graden) en lage druk.
De hoge druk vereist een speciaal reactorvat die bij Thorium SMR niet nodig is en hoge druk is altijd moeilijker te beheersen. De efficiency=1-Tlaag/Thoog dus bij Thorium SMR veel hoger. Ook wordt de brandstof bij Thorium SMR bijna volledig verbrand en heb je daarom heel weinig kort levend (300 jaar) afval. En dat afval kun je in dezelfde centrale weer verbranden en onschadelijk maken.
Dergelijke 4e generatie SMR centrales worden in een fabriek in serie gebouwd. Dat lost meteen de prijsonzekerheid en de bouwtermijn onzekerheid op. Die onzekerheden ontstaan doordat je de centrale op de uiteindelijke locatie bouwt en omdat je door een proefperiode heengaat. Bij serieproductie in een fabriek is dat snel opgelost en de kant en klare SMR centrales worden met een vrachtwagen naar de bestemming vervoert.
Toepassing
De nieuwe generatie modulaire (Thorium) centrales kun je heel flexibel inzetten. Bij de huidige kolen/gas/biomassa centrales die moeten sluiten, kun je alleen het stookgedeelte vervangen door een of meer modulaire centrales en de rest zoals de generatoren kun je hergebruiken. Dan converteer je vuile kolencentrales naar groene CO2 vrije centrales. Ik vermoed dat dit de Chinese aanpak is, waarbij de (50!) nieuwe kolencentrales die nu gebouwd worden, later omgezet worden naar groene CO2 vrije SMR centrales.
Een andere benadering is de modulaire centrales lokaal in te zetten in een zon/wind/modulaire centrale driehoek. Het grote voordeel is dat je zo grotendeels het probleem van leverzekerheid en van het transportnetwerk oplost. Bedenk dat je een Thorium SMR centrale in capaciteit kunt sturen (20% - 100%) door warmte in het zout op te slaan.
Het is belangrijk dat actiegroepen die zich (terecht) inzetten voor het sluiten van de klassieke generatie 2 kerncentrales, hun focus gaan zetten in het bevorderen van de nieuwe generatie 4 groene (Thorium) centrales. Maar dat is wel even wennen.
Meer lezen?
Zoek op Smal Modular Reactors of 4th Generatie Reactors.
Dit is een erg goed en realistisch verhaal van professor Jason Steffen.
Ook wordt duidelijk dat je met een generatie IV reactor door de hoge temperatuur en de modulaire opbouw heel veel nieuwe mogelijkheden krijgt.
https://www.youtube.com/watch?v=t4KaH9qnx4k
Overhaast klimaat beleid, dat is een goeie.
Alsof we niet al tientallen jaren lopen te treuzelen
Ik begrijp je opmerking en waardeer je inbreng.
Ja, de inzichten van deskundigen willen nog wel eens verschillen.
Maar prof Richard Tol is niet de eerste de beste en hij heeft meegewerkt aan de IPCC-rapporten. En als ik zijn argumenten lees, dan is daar niets mis mee. Ik denk dat we zijn inzichten serieus moeten nemen.
Een andere deskundige met zeer nuttige inbreng is Wouter van Dieren. Hij wordt ook wel de groene paus genoemd omdat hij meerdere groene partijen (mede) heeft opgericht. Ook was hij lid van de club van Rome en zijn deskundigheid is bekend. Een heel belangrijke inbreng van hem is het indringend aan de kaak stellen van het ontbrekende systeemdenken. Vanuit mijn technische achtergrond kan ik het alleen maar heel erg met hem eens zijn.
Ja, binnen groene partijen is men niet altijd blij met de inbreng van prof Richard Tol en Wouter van Dieren. Maar in mijn denken kan ik niet om de lessen van die deskundigen heen. Ja, er zijn altijd wel deskundigen met een andere mening. Maar we moeten vooral niet de discussie stoppen, omdat de inzichten verschillen of onwelgevallig zijn.
Het lijkt mij eerder “an inconvenient truth”, dus een ongemakkelijke waarheid.
Die Hossenfelder is een ervaren theoretisch fysicus, dus de goede expertise in dit geval. Ze analyseert keurig allerlei verhalen waar ze precies het probleem aanwijst. En het is allemaal netjes traceerbaar, dus niet zomaar wat beweringen. Maar de presentatie is een kwestie van smaak.
Ja, de bouwtijd van een centrale is in Japan en in China 4 jaar. Ook in Japan heeft men strenge regelgeving. De snelheid krijgt men door zaken parallel te doen en doordat elk besluit niet nog een paar keer ter discussie wordt gesteld.
Maar wil je nu snel een generatie 4 centrale hebben, dan is inkopen in China een goede weg.
Een ander twistpunt is de prijs van elektriciteit. Kernenergie is niet goedkoop, maar de factor twee is een goede schatting. En een continue energiebron mag duurder zijn dan een intermittende bron zon/wind. En het grote voordeel zit in het combineren van die verschillende bronnen.
Het klimaatprobleem is ernstig en wereldwijd. Dan is het zeer onverstandig om puzzelstukjes van de oplossing zomaar opzij te schuiven. Ook zeggen de IEA en IPCC in meerdere scenario's dat kernenergie nodig is. Dat is mijn motivatie.
@jvdleeuw Bedankt voor je nuttige bijdrage, je hebt het prima begrepen.
Bij systeemdenken heb je een dynamische systeemarchitectuur nodig. Daarmee worden alle puzzelstukjes (zon – wind – opslag – kernenergie – transport) optimaal samengesteld. En kernenergie is zeker geen oplossing voor alles, maar een nuttig puzzelstukje. Dynamisch is belangrijk omdat puzzelstukjes verder ontwikkeld worden en er nieuwe bijkomen (bv opslag).
Om dat systeem bij te houden en te adviseren heb je een onafhankelijk Energietransitie Management Team nodig, waarin wetenschappers en deskundigen van verschillende disciplines de centrale en decentrale overheden adviseren hoe om te gaan met de energietransitie. Als je dat niet doet, dan krijg je partij politieke ideologieën van alle stromingen, dat is niet goed voor de geloofwaardigheid en lost niets op.
Maar de uitvoering is ook een probleem, omdat via de RES veel over de schutting van gemeentes is gegooid die ook nauwelijks expertise in huis hebben.
Om het probleem van de fluctuerende energievraag op te lossen noem ik twee mogelijkheden:
1 In de nieuwe zout gekoelde generatie 4 SMR kerncentrales kun je de output regelen tussen de 20% en 100% door warmte in het zout op te slaan. Heel veelbelovend, maar nog helemaal in het prototype stadium.
2 De kleine generatie 4 SMR centrales, bijvoorbeeld de gasgekoelde die sneller ter beschikking komen, kun je overal in het land plaatsen (geen waterkoeling nodig) wat het transport sterk ontlast. Ze zijn absoluut veilig en het afvalprobleem is nagenoeg opgelost (afval verbrand je in snelle generatie 4 SMR kerncentrales en wat er overblijft hoef je maar 300 jaar te bewaren). Grote problemen zijn de regelgeving en de publieke opinie.
Natuurlijk zijn een meer oplossingen te bedenken, maar het is essentieel dat ze goed in een dynamische systeemarchitectuur passen.
Inderdaad groeit de totale behoefte aan elektrische energie door steeds verdergaande elektrificatie. Bijvoorbeeld nu gebruiken we 100% elektriciteit waarvan 10-20% uit zon en wind. Maar als je alles elektrificeert inclusief industrie, hoeveel is er dan nodig? De schattingen afhankelijk van de aannames variëren van 200-400% met hogere uitschieters. De hogere schattingen zijn heel realistisch en dan moeten we alle bronnen bijzetten om dat te halen.
Dat kan natuurlijk minder zijn als je grootgebruikers verplaatst naar het buitenland. Maar de politiek moet natuurlijk ook naar verdienvermogen en werkgelegenheid kijken. Kortom een ingewikkelde discussie. Ook zijn er (Duitse) studies die zeggen dat je bij elektrificatie en innovatie ook efficiënter gaat werken.
Maar er zijn ook realistische voorbeelden waarbij de efficiency minder wordt. Bijvoorbeeld nu zitten we in een makkelijk traject van de energie transitie. De mensen die nu isoleren en een 40 graden warmtepomp only nemen, die kopen een nieuwgebouwd huis of zijn meer voorop lopers. Die voorop lopers zijn zeer gemotiveerd met een hoog acceptatie niveau.
Maar er zijn nog heel veel meer woningen waar het isoleren niet zo snel gaat. Vaak worden particuliere verhuurders genoemd, maar ook andere bewoners zien op tegen de kosten. Dat zijn de grote middengroepen. Als we die van het gas willen halen, dan zijn we vaker aangewezen op 70 graden warmtepompen. Die worden al breed getest, maar zo een 70 graden warmtepomp heeft een veel lager rendement dan een 40 graden warmtepomp, dus met een stuk meer elektriciteit gebruik.
In deze rubriek zijn een aantal reactie tegen kernenergie. Dat is heel begrijpelijk en in veel van de argumenten hebben ze gewoon gelijk. Het is namelijk volkomen terecht dat de klassieke generatie 2 watergekoelde kerncentrales dichtgaan. Ze zijn niet inherent stabiel en daarmee onveilig. Met name moeten ze gekoeld worden en als die koeling wegvalt dan worden ze instabiel met soms grote gevolgen. Daarbij produceren ze afval dat vele duizenden jaren veilig moet worden opgeslagen.
Maar de opkomende generatie 4 centrales is een totaal ander verhaal. Die generatie 4 centrales zijn inherent veilig. Als er iets gebeurt met de koeling etc. dan stopt de reactie gewoon. Ook hebben zij geen kritische zaken als een speciaal reactorvat nodig. En er is brandstof genoeg voor eeuwen. En het afvalprobleem is feitelijk opgelost, omdat zij het afval verder kunnen verbranden en zo onschadelijk maken (zie de Canadese reactoren). Een generatie 2 centrale verbrandt 3% van de brandstof en de rest is afval. Maar een generatie 4 centrale verbrandt 98% van de brandstof en heeft dus veel minder afval. Ook hoeft dat afval van een generatie 4 centrale minder lang, 300 jaar bewaard te worden. Vergelijk dat met toekomstig kernfusie afval dat 200 jaar bewaard moet worden.
Maar hebben we ze wel nodig? De IEA en IPCC zeggen dat kernenergie nodig is. Niet iets dat alles oplost maar als puzzelstukje (zon – wind – opslag – kernenergie – transport) in het geheel.
Maar wat betekent dat? Zij werken met scenario’s die gebaseerd zijn op aannames. Bijvoorbeeld nu gebruiken we 100% elektriciteit waarvan 20% zon en wind (bron CBS), maar als je alles elektrificeert inclusief industrie, hoeveel is er dan nodig? De schattingen afhankelijk van de aannames variëren van 200-400% met hogere uitschieters. Dus we hebben nog veel groei nodig.
Deze generatie 4 centrales hebben geen waterkoeling nodig, dus je kunt ze overal neerzetten.
Vanwege de hoge temperaturen zijn ze zeer geschikt om industriële processen te vergroenen.
De huidige ontwikkeling is het opzetten van kleine veilige flexibele centrales (Small Modular Reactors SMR). Klein betekent dat ze in een container passen en overal neergezet kunnen worden. Ook kunnen ze in serie fabrieksmatig geproduceerd worden, wat ze voorspelbaar en betaalbaar maakt.
Generatie 4 centrales draaien al productie in China (een gasgekoelde en een zout gekoelde).
De bouwtijd van een kerncentrale in Japan en in China is vier jaar.
Bovenstaande informatie zal nog vele vragen oproepen. Heel recent is een zeer goed overzicht verschenen van Tomas Pueyo dat de meeste vragen beantwoord:
https://unchartedterritories.tomaspueyo.com/p/why-nuclear-is-the-best-energy
Even voor de volledigheid: type 4 centrales zijn niet inherent veilig.
Ze zijn aanzienlijk minder gevoelig voor een meltdown.
Maar de meeste recente problemen met kerncentrales,
of beter gezegd de recente rampen,
want kerncentrales, ook type 4’s hebben een reeks aan problemen,
waren volgens mij niet van het meltdown type?
Als je de plannen van Gen IV een beetje doorneemt dan krijg je niet het idee dat er in Europe binnen een jaar of 10 kan worden begonnen met de bouw van type 4 centrales.
GIF Portal - GIF Annual Report 2022 (gen-4.org)
Zelfs in China, waar beslissingen toch een stuk makkelijker kunnen worden genomen zijn ze vooral nog aan het experimenteren.
Op dit moment kunnen er alleen type 3 gebouwd worden.
Wie dat dan zou moeten doen is sinds EDF weer helemaal in handen is van de Franse staat ook een groot vraagteken?
Ik ken geen enkel lopend project in Europa dat je op welke manier dan ook als succesvol zou kunnen zien. Niet in Finland, Frankrijk noch de UK.
In de UK wordt een nieuwe site gebouwd waarvan ze eigenlijk nu al weten dat water toevoer een serieus probleem gaat zijn. Je kunt er dus op wachten dat die, net zoals vele andere bestaande centrales, met enige regelmaat stil zal moeten komen te liggen.
De grootste speler - voor zover ik weet - had en heeft ook nog steeds een plethora aan problemen. Zo ligt ongeveer de helft van de centrals in Frankrijk meestal plat.
Persoonlijk verwacht ik dan ook dat er de komende 10 jaar niet eens voldoende capaciteit bijgebouwd kan worden om de bestaande capaciteit te vervangen.
Laat staan dat kernenergie ons kan helpen in de energie transitie.
Anne.
Ik begrijp dat Anne niet erg enthousiast is. Dat mag en iedereen moet zelf dat maar eens bekijken. Ik waardeer alle bijdragen in deze rubriek.
Maar Anne schreef: "Ze zijn aanzienlijk minder gevoelig voor een meltdown.”.
De inhoud van een generatie 4 is al gesmolten bij bedrijf, dat is de reden dat een meltdown helemaal niet kan.
En in China draaien de generatie 4 al productie, een gasgekoelde en een zout gekoelde. En dat aantal wordt nu snel uitgebreid. Daarbij is de bouwtijd in China en Japan van een centrale 4 jaar.
Kennelijk is er behoefte aan duidelijke informatie.
Heel recent is een zeer goed overzicht verschenen van Tomas Pueyo dat de meeste vragen beantwoord:
https://unchartedterritories.tomaspueyo.com/p/why-nuclear-is-the-best-energy
Dit zal Anne niet overtuigen, maar iedereen moet het maar voor zichzelf bekijken.
Vreemd. Een thorium Small Modular Reactor is een kleine versie van, met de nodige veranderingen, van een bestaande techniek. Namelijk een uraniumreactor. Omdat deze makkelijker te bouwen (zouden, er wordt er nog geen enkele gebouwd) zijn. Een (commerciële) thoriumreactor draait nog nergens. Dus hoe kan je dan van een niet bestaande reactortype een kleine versie gaan maken?
Een tweede proefcentrale is een Thorium centrale met gesmolten zout die in de woestijn staat in China. Deze centrales hebben geen waterkoeling nodig …
Nu neem ik alle berichten over thoriumcentrales met een grote korrel zout. Nu google ik en ik kan inderdaad iets vinden over een thoriumproefcentrale in een woestijnstad in China. Hij is slechts 2 MW én … levert geen elektriciteit. Dan heb je dus ook geen stoomturbine en heb je, om een hoog temperatuur en dus druk verschil een hoog rendement te krijgen, ook geen koelwater nodig.
Elektriciteitsopwekking door een warmtebron (gasverbranding of nucleair) gaat altijd door middel van een stoomturbine.
Chinese gesmoltenzoutreactor mag van start | De Ingenieur
Je bericht is wat achterhaald, maar de ontwikkelingen gaan ook erg snel.
De Thorium centrale die al langer proef draait in de Gobi woestijn heeft half 2023 van de toezichthouder toestemming gekregen om productie te gaan draaien:
Thorium centrale mag productie draaien.
De gasgekoelde centrale draaide al langer productie.
De berichten over Thorium zijn inderdaad nogal gehyped. De gasgekoelde centrales komen veel eerder in grotere aantallen omdat ze eenvoudiger zijn. Maar Thorium heeft vele voordelen in China en met name India, dus vandaar hun grote inzet. Ook de snelle neutronen centrales komen achteraan omdat ze ingewikkeld zijn, maar grote voordelen hebben omdat ze afval onschadelijk maken. Met name Canada zet hier groot op in.
Een groot voordeel van generatie 4 centrales, buiten de veiligheid en nauwelijks afval, is dat ze breed inzetbaar zijn. Bijvoorbeeld je kunt ze overal plaatsen (kijk eens naar de net problemen), ze zijn heel schaalbaar en voorspelbaar en vanwege de hoge temperatuur kun je ze gebruiken om industrie te vergroenen zoals hoogovens.
Ik verwijs liever naar het verhaal van Tomas Pueyo dan dat ik alles hier uitleg. Het is Engels, maar in je webbrowser kun je het automatisch vertalen.
@Aart H . Ik ga het niet lezen want die site vraagt goedkeuring cookies en ten tweede betwijfel ik het verhaal. Want als er al een thoriumcentrale zou draaien (dus zelfs elektriciteitsopwekking) waarom zou Thorizon en de TU Delft dan nog ‘prullen’ met Thorizon en problemen op te lossen. Zo is er nog geen methode om de reagentia uit de zoutreactor te halen.
@Aart Een reden waarom ik nog niet overtuigd raak is omdat je niet of nauwelijks in gaat op mijn argumenten :)
Wat er in China gebeurt is niet relevant voor de situatie in Europa.
Het is niet aannemelijk dat type 4 centrales sneller of goedkoper kunnen worden gebouwd.
Dat zal sowieso pas kunnen beginnen als ze daadwerkelijk productie rijp zijn, en als ik naar de verhalen van GEN IV kijken lijkt dat niet binnen een decennium te gaan gebeuren.
De kleinere SMR centrales zullen mss wel wat sneller en ‘goedkoper’ kunnen worden gebouwd, maar daar zijn er dan weer veel meer van nodig. Met alle bijbehorende plannings problemen (NIMBY anyone?). Goedkoper heb ik tussen haakjes gezet omdat het nog altijd vele maken duurder is dan de meeste andere energiebronnen. Het zal dus alleen met fiks veel staats steun kunnen worden gerealiseerd.
Het feit dat EDF genationaliseerd is zal er mijns inziens juist toe leiden dat het allemaal nog veel langer zal duren en nog meer zal kosten om de bestaande capaciteit - die op veel plaatsen toch echt aan het piepen en kraken is om nog te kunnen blijven draaien - te vervangen.
Laat staan om nieuwe capaciteit toe te voegen.
Anne.
De IEA en IPCC zeggen daarbij dat kernenergie nodig is. Dat zeggen ze op basis van scenario’s die weer gebaseerd zijn op aannames. Afhankelijk van de aannames kan dat meevallen, maar ook tegenvallen. In het meest ideale scenario kun je zonder kernenergie, maar dan neem je wel een groot risico als de ideale aannames niet uitkomen. Ook zegt het IPCC dat nieuwe technologieën cruciaal zijn voor het terugdringen van de CO2-uitstoot.
Daarbij ben je daar afhankelijk van het internationale politieke speelveld. Dan is het verstandig om alle puzzelstukjes inclusief kernenergie beschikbaar te houden. Dat geeft je de broodnodige flexibiliteit om de energietransitie in alle scenario’s overeind te houden.
Daarbij zou ik de generatie 2 centrales willen sluiten. Het ideale scenario zijn de meer flexibele en veilige generatie 4 centrales zoals de kernenergie hoogleraren adviseren, maar de Fransen zullen grote druk uitoefenen om hun generatie 3 EDF centrales te kopen.
Kernenergie gaat niet alles vervangen, maar is een optimaal puzzelstuk van (zon - wind - opslag - groene kernenergie - transport). Een niet intermitterende bron maakt het geheel eenvoudiger en mag meer kosten. Het is dus niet zon of wind of kernenergie maar een optimale combinatie en dat optimaal combineren heet systeem optimalisatie. En met een dynamische systeemarchitectuur omdat onderdelen zich blijven ontwikkelen.
Kijk eens naar de IPCC-scenario’s of lees (Google) een artikel van de groene paus Wouter van Dieren. Hij is medeoprichter van milieudefensie en andere groene partijen. Vanuit zijn ervaringen in de Club van Rome propageert hij systeemdenken.
Indien we alles elektrificeren hebben we heel veel meer nodig. Als we het huidige elektriciteitsgebruik op 100% zetten, hoeveel is er dan nodig als industrie en gasgebruikers overgaan naar elektrisch? Dan is er veel meer nodig en de schattingen lopen van 200% - 400% met een uitschieter van 500% en dat is afhankelijk van alweer die aannames. Dan is het onverstandig om puzzelstukjes maar even af te wijzen. Prof Turkenburg zei recent in een tv-programma dat we het met alle puzzelstukjes niet redden en hij adviseert om ook gascentrales in reserve te houden.
Wat er in China gebeurt is heel relevant voor de situatie in Europa! Kijk maar naar alle industrieën met een ijzersterke Chinese positie. En in de energietransitie is een samenwerking met China voor de hand liggend ondanks alle politiek en industriepolitiek. Generatie 4 centrales in China kopen om vaart te maken is voor mij dan een optie. Het klimaatprobleem is te belangrijk om dat zomaar af te wijzen!
Tja, ik blijf toch het idee houden dat je niet echt in gaat op mijn argumenten :)
Zelfs als er vandaag zou worden begonnen met de bouw van type IV reactoren,
dan zouden die waarschijnlijk pas op zijn vroegst rond 2045 online komen.
Dat is dus niet op tijd om de doelen van 2030 te halen.
En waarschijnlijk zelfs niet om de doelen van 2050 te halen.
Met een beetje geluk (of is het pech?) wel voordat nuclear fusie een echte rol kan gaan spelen.
Maar er zal vandaag niet worden begonnen met de bouw van type IV reactoren.
De aangepast tijdlijn van Gen IV GIF geeft aan dat ze op zijn vroegst in 2030 uit de demonstratie fase zullen komen. Die tijdlijn gaf eerder aan dat dit punt in 2020/2025 zou worden bereikt. Er is in de afgelopen 10 jaar dus als 5 a 10 jaar vertraging opgelopen.
Kortom, niets wijst er op dat kernenergie (via splitsing) ons kan helpen bij de energietransitie.
Anne.
Dat is dus niet op tijd om de doelen van 2030 te halen.
Anne.
De wereld is nog niet vergaan in 2030.
Dit is geen simpele vraag, de materie is niet alleen technisch, maar ook op andere gebieden complex en daarom een wat uitgebreider antwoord.
De kernenergie discussie heeft veel overeenkomsten met de stikstof discussie.
De stikstof hadden we 10 jaar geleden al kunnen oplossen met een gecoördineerde overgang, maar door belanghebbenden (boeren, enz.) wordt dat op NL en op Europees niveau getraineerd.
Op dezelfde manier hadden we 10 jaar geleden met de invoering van kernenergie kunnen beginnen met een gecoördineerde overgang, maar door tegenstanders (groene partijen, enz.) wordt dat op NL en op Europees niveau getraineerd.
Het Europese project om generatie 4 centrale te ontwikkelen onder leiding van de TU Delft heeft vanwege het politieke weifelen nauwelijks budget gekregen en hebben nu niet eens geld voor een proefcentrale. Toch blijven zij optimistisch want er zijn geen fundamentele problemen meer (zoals bij kernfusie), alleen nog technologische problemen. Hier gaat het niet snel en zij denken rond 2040 een centrale te kunnen leveren.
(Vanwege de onopgeloste fundamentele problemen is een kernfusie centrale niet te voorspellen, maar dat zal nog tientallen jaren duren is de verwachting).
Maar het grootste probleem is dat de energietransitie niet gecoördineerd wordt door een team van deskundigen. Ja, allerlei partijen hebben hun standpunten en rapporten, maar dat is geen coördinatie. Er zijn grote opgaves zoals de isolatie en het transportprobleem, maar ook draagvlak. Iedere partij doet zijn stukje en de coördinatie is ver te zoeken.
Om een energietransitie goed en effectief te doen hebben we systeemdenken nodig. Daarmee worden alle puzzelstukjes (zon – wind – opslag – kernenergie – transport) optimaal gecombineerd. Ook moet die systeemarchitectuur dynamisch zijn want de puzzelstukjes worden steeds verder ontwikkeld en er komen ook nieuwe bij (opslag, groene kernenergie). En de overheid moet regie voeren om dat systeemdenken effectief te implementeren. En niet via de RES de uitvoering en coördinatie over de schutting van gemeentes te gooien, want die missen de noodzakelijke kennis.
Dat systeemdenken wordt al veel langer betoogd door de groene paus Wouter van Dieren die ook meewerkte in de Club van Rome. Niet de eerste de beste en ik ben het hartgrondig eens met zijn betogen.
Wanneer kan een kerncentrale geleverd worden?
Dat is afhankelijk van het type. Het snelst kan een klassieke generatie 3 centrale geleverd worden, daarna een gasgekoelde generatie 4 centrale en daarna een generatie 4 centrale die afval kan vernietigen en die je vanwege de hoge temperatuur kunt gebruiken om industrie te vergroenen.
De bouwtijd van een klassieke centrale in Japan en China is 4 jaar. China gaat nog sneller vanaf 2025 grootschalig generatie 3 en 4 centrales bouwen die in een fabriek in serie worden geproduceerd en het stook gedeelde van de kolencentrales moeten vervangen. Daarna wil men vanaf 2030 die centrales exporteren. Dit is voor Nederland de snelste route.
Wanneer kan EDF een nieuwe generatie 3 kerncentrale leveren?
EDF is in staat om een nieuwe generatie 3 kerncentrale te leveren tussen 2030 en 2035.
Het kabinet wil in 2025 een definitieve keuze maken over de locatie en het reactorontwerp.
De bouw van de nieuwe centrales zou dan in 2030 kunnen beginnen.
Dit zijn de nieuwste Franse EDF generatie 3 centrales. Die nieuwe generatie centrales zijn sterk gestandaardiseerd en belangrijke componenten zijn over gedimensioneerd. Dat maakt ze voorspelbaar, betaalbaar en snel te leveren.
Er zijn veel kandidaten voor het leveren van een generatie 4 centrale.
De verwachting is dat de eerste generatie 4 centrales buiten China rond 2035 operationeel zijn. De ontwikkeling van de regelgeving, financiering en publieke acceptatie zijn belangrijke factoren die de timing zullen beïnvloeden.
@Driepinter Nee, de wereld vergaat pas over een miljard jaar of zo, als hij de zon in draait :)
Het is vooral onze manier van leven die op een gegeven moment onder druk zal komen staan.
Anne.
@Driepinter Nee, de wereld vergaat pas over een miljard jaar of zo, als hij de zon in draait :)
Het is vooral onze manier van leven die op een gegeven moment onder druk zal komen staan.
Anne.
Wat komt er allemaal op ons af: stikstof, water, landbouwgif, medicijnresten, klimaat verandering, enzovoort.
En de adviseurs van de overheid zeggen "Niet alles kan en zeker niet tegelijk". Dus stel prioriteiten.
Waar we nog aan moeten wennen zijn de (grote) investeringen om de gevolgen van de klimaatveranderingen op te vangen, zoals zeespiegelstijgingen en extreem weer. Want als we in 2050 de energietransitie gedaan hebben, dan houden we nog heel veel jaren een sterk verstoord klimaat. De reden daarvoor is de opwarming van de oceanen die tientallen jaren nodig zal hebben om weer af te koelen. En de ergste problemen zoals extreem weer en de grote droogtes komen door de opwarming van de oceanen. Een energietransitie zorgt dat het niet erger wordt, maar het is zeker niet genoeg! Daarmee moet je eerlijk zijn naar de mensen toe, want met die maatregelen moet je nu beginnen.
Een kerncentrale is niet de vervanger van alles, maar een noodzakelijk puzzelstukje in het geheel.
Om de energietransitie goed en effectief te doen hebben we systeemdenken nodig. Daarmee worden alle puzzelstukjes (zon – wind – opslag – kernenergie – transport) optimaal samengesteld.
Ook moet die systeemarchitectuur dynamisch zijn want de puzzelstukjes worden steeds verder ontwikkeld en er komen ook nieuwe bij (opslag, groene kernenergie). En de overheid moet regie voeren om dat systeemdenken effectief te implementeren. Want de energietransitie moet echt gecoördineerd worden. En niet via de RES de uitvoering en coördinatie over de schutting van gemeentes te gooien, want die missen de noodzakelijke kennis.
Het systeemdenken wordt al veel langer betoogd door de groene paus Wouter van Dieren die ook meewerkte in de Club van Rome. Niet de eerste de beste en ik ben het hartgrondig eens met zijn betogen.
De IEA en IPCC zeggen dat kernenergie nodig is. Niet iets dat alles oplost maar als puzzelstukje in het geheel. Maar wat betekent dat?
Zij werken met scenario’s die gebaseerd zijn op aannames. Bijvoorbeeld nu gebruiken we 100% elektriciteit, maar als je alles elektrificeert inclusief industrie, hoeveel is er dan nodig? De schattingen afhankelijk van de aannames variëren van 200-400% met hogere uitschieters. Dus we hebben nog veel groei nodig. Dan is het onverstandig om puzzelstukjes maar even af te wijzen. Prof Turkenburg zei recent in een TV programma dat we het met alle puzzelstukjes niet redden en hij adviseert om ook gascentrales in reserve te houden.
En dan de kosten en de tijd om een kerncentrale te bouwen.
Zie de analyse van de fysicus Sabine Hossenfelder op Youtube. Zoek of Google dan naar “Is nuclear power really that slow and expensive as they say?”.
- De kosten van kernenergie is twee keer zo duur als zon/wind. Maar een constante energiebron mag duurder zijn dan een intermittent energiebron (wind/zon) waar we bovendien extra kosten voor opslag hebben.
- En de bouwtijd van een kerncentrale in Europa is 6 jaar (tegen 4 jaar in Japan).